
Network Device Integrity (NDI)

Methodology

February 23, 2016

2

Table of Contents

Network Device Integrity (NDI) Methodology .. 4

Introduction ... 4

Unauthorized Access .. 4

Software Modification .. 5

Hardware Modification ... 6

Prevention ... 7

Remediation .. 8

Network Device Integrity (NDI) - Unauthorized Access Detection ... 11

Login Access ... 11

Configuration Changes ... 12

Interface Changes .. 13

Physical Access ... 13

Unscheduled Reboots .. 13

Software Management .. 14

Blocked Attempts.. 15

Downgraded Encryption ... 15

Network Traffic Analysis ... 16

Network Device Integrity (NDI) - Software Modification Detection ... 17

File Verification .. 17

Online Hash .. 17

Offline Hash .. 18

Published Hash (Known Good) .. 18

Hash Comparison .. 19

Self-Verification ... 22

Higher Confidence Levels .. 22

Memory Verification .. 23

Firmware Verification ... 24

Rootkit Detection .. 25

Network Device Integrity (NDI) - Hardware Modification Detection ... 26

Unique Identifiers ... 26

Operating Statistics ... 27

3

Network Traffic Analysis ... 27

Network Device Integrity (NDI) - Worksheets ... 28

System Information Worksheet .. 30

Unauthorized Access Detection Worksheet .. 32

File / Memory / Firmware Verification Worksheet .. 34

References ... 35

4

Network Device Integrity (NDI) Methodology

Introduction

Computer networks are complicated systems of interconnected devices of different technologies, to

include workstations, servers, network devices and peripherals. Network devices are the systems that

transport data between other systems on the network, which generally includes routers, switches, firewalls

and various other types of technologies. Even though network devices generally do not store or process

information, the compromise of these systems could allow an adversary or a malicious insider to gain

unauthorized access to the information that is stored, processed or transmitted by other systems on the

network, violating confidentiality. That same information could also be modified, corrupted or destroyed,

violating integrity or impacting availability. Depending on the operational requirements for the network,

any such violations could have a severe impact to the mission that the network supports.

How do I know if my network device has been compromised?

It is critical for network administrators to verify the integrity of all systems attached to a network to

obtain a reasonable level of confidence that a compromise has not occurred, affirming that confidentiality,

integrity and availability of the information on the network has not been violated. The Network Device

Integrity (NDI) methodology is a process to verify the integrity of systems on an operational network,

specifically network devices, such as routers, switches and firewalls. Any discrepancy discovered during

the verification process could be an indication of a compromise.

Unlike other types of common systems, the operating system of a network device or an embedded system

may not provide the flexibility or interface to validate critical aspects of the system, such as the hardware,

operating system files or the contents of memory. This methodology is designed to be system independent

and can be adjusted as needed, depending on the type of system that is being verified. Some systems may

not support all of the necessary functionality and thus a higher level of confidence can only be obtained

by using more intrusive methods. To adequately detect a compromise, it is first necessary to understand

the different methods an adversary can use to successfully compromise a network device.

Unauthorized Access

The most common compromise of a network device is when an unauthorized individual gains user or

privileged level access through an administrative interface. This could be achieved via direct physical

access to the network device or via a remote network administration service such as Secure Shell (SSH),

Telnet, Hyper-Text Transfer Protocol (HTTP) or Simple Network Management Protocol (SNMP).

Unauthorized access can be achieved by stealing legitimate administrator credentials (username,

password, two-factor authentication token), obtaining credentials that are improperly protected by

administrators (e-mailing configurations, storing clear-text passwords in a document), or compromising a

centralized authentication server (TACACS+, RADIUS, LDAP) and adding or modifying accesses.

Unauthorized access can also be achieved when a network device is poorly configured and authentication

mechanisms are insufficient or can be easily bypassed, such as weak credentials that can be guessed or

cracked via brute-force methods, or when publicly known default credentials are left unchanged. It is also

5

common for network administrators to overlook upgrading the software on network devices, allowing

unauthorized access to also be achieved through the exploitation of software vulnerabilities in unpatched

or outdated software.

It should always be assumed that unauthorized access can be obtained with physical access since most

network devices have a mechanism to perform a password reset or similar function. A reboot of a network

device is generally required for the password to be cleared or to reset the configuration to a default state.

A terminal server can be used to remotely access the console port of network devices and should always

be treated the same as physical access.

Once unauthorized access to a network device is obtained, an adversary can view or modify configuration

settings, elevate privileges to gain additional accesses, perform software modifications, or utilize the

system to bypass existing access restrictions to compromise other systems on the network where critical

information resides.

Detecting unauthorized access to a system can be difficult, especially when an adversary utilizes stolen

administrator credentials. An adversary may login to a network device from a compromised administrator

workstation using the credentials of the same administrator that generally uses that workstation to manage

the network devices. In this case, it is extremely difficult to distinguish between legitimate and

unauthorized accesses, especially on the device itself. Unauthorized access is better detected by

examining and correlating syslog messages, Authentication, Authorization and Accounting (AAA) logs,

SNMP trap logs, administrator workstation logs, and any other available log messages. Any abnormal

activities could be an indication of unauthorized access.

Several types of compromises, including those described below, can only be achieved by powering off a

network device or rebooting it. When the proper logging and networking monitoring functions are

enabled on the network, it should be reasonably simple to detect when a network device has been

rebooted outside of normal network operations. All log messages should be stored on remote log servers

to prevent an adversary from clearing the logs, which would require the adversary to also compromise the

log servers to hide any malicious actions performed.

Software Modification

A more complicated compromise of a network device is the modification or replacement of the software

running on the network device. This could be a modification to the operating system files stored on the

device, or a modification to the operating system code residing and executing in memory. Another similar

type of compromise is the modification or replacement of the software that boots the device and initially

loads the operating system, such as the device's firmware, boot loader, or basic input/output system

(BIOS), which is generally stored on a separate read-only memory (ROM) chip located on the device's

motherboard. Some devices may allow the boot software on the ROM to be accessed, modified or

upgraded via the operating system after the device boots, while others may require a reboot into a separate

mode where the ROM can be accessed.

Unauthorized access is generally a requirement for an adversary to perform a software modification of a

network device. Once access is obtained, the adversary can overwrite the operating system files stored on

the device or residing in memory. Many network devices may require a reboot for a software

6

modification to take effect when stored files are changed, while a modification of code in memory should

be immediately applied without a reboot.

Modifying the software of a network device is generally not a trivial task. It requires understanding the

hardware and architecture of the particular network device, which generally differs from common desktop

computers. This may require reverse engineering the existing software to determine how the software can

be modified in a way that is useful for the adversary. Aside from the difficulty, there are several publicly

known cases1 2 3 4 where an adversary has successfully modified the operating system files stored on

network devices for malicious purposes.

Fortunately, the detection of a software modification on a network device can be achieved by comparing

the software currently stored on the system or running in memory with a known good, assuming all of the

necessary information is accessible or can be acquired. Many enterprise network device vendors provide

known goods via their publicly available websites either via a software download or by publishing

cryptographic hashes of the operating system files.

To perform the comparison, the software on the network device needs to be cryptographic hashed or

downloaded and compared with the known good. A software modification can be detected as long as the

functionality to retrieve this information from the network device is available and a trusted known good

exists. When a known good does not exist or is not available from the vendor, a large sample of the same

information from different systems may be sufficient to provide a reasonable level of confidence, or it can

be used to establish an internal repository of known goods. Regardless, a known good provided by the

vendor should always be the most trusted source.

Hardware Modification

Another more complicated compromise of a network device is the modification or replacement of the

hardware. Additional hardware could be added to the device, such as a wireless radio, to grant an

adversary out-of-band access for command and control, or an inline tap to exfiltrate sensitive information

from an internal area of the network through a backdoor connection. Individual counterfeit components

could also be produced, or an entire device could be manufactured to masquerade as a legitimate device

and sold strictly for monetary gain. Recycled parts could be introduced in counterfeit equipment that

could be less reliable. Even though the operational function of counterfeit devices may appear to be the

same as legitimate devices, they are generally less reliable and vendors may decline to provide assistance

if a counterfeit system is discovered during a support call.

A hardware modification, replacement or addition will always require the adversary to have physical

access to the network device. It is generally easier to perform hardware modifications through the supply

chain before the device is delivered to the intended location. Otherwise additional hardware could be

added to the device after it has been installed and may or may not require the device to be powered off,

depending on the modification.

Hardware modifications can range from an individual integrated circuit (IC) on a peripheral to an entire

device. Because there are numerous avenues for an adversary to modify a piece of hardware, it can be

extremely difficult to detect a hardware modification. This process is highly system dependent because

every type of system can be uniquely different.

7

Prevention

It is prudent to describe several basic mitigation concepts to prevent the different types of compromises

described above before they even happen. Designing enterprise networks or securing all of the network

devices5 and other systems on enterprise networks can be a significantly complicated task. The items in

the list provided below are a few high level concepts that should be followed to assist with preventing

compromises of network devices.

 Ensure physical access to network devices is properly restricted and some form of accountability

exists to track who has physically accessed the systems. An adversary with physical access to a

network device, even for a limited amount of time, could result in any of the compromises

described above. Utilize a network access control (NAC) solution to prevent unauthorized

systems from connecting to the network.

 Follow industry best practices for securing, managing and restricting remote access to network

devices. Implement the concept of least privilege to ensure privileged level access requires

additional authentication and is only used when it is required to restrict an adversary from

elevating privileges from a compromised user account. Ensure accountability exists for all

individuals that login to systems. Utilizing two-factor authentication can significantly decrease

the ability for an adversary to steal or obtain legitimate credentials from an administrator. Do not

store or transmit unprotected sensitive configuration information, including passwords and keys.

Utilize encrypted protocols for remote administration and storage of sensitive information.

 Follow defense-in-depth when designing, building and re-configuring a network. Different areas

of the network should be properly segregated and all administrative functions should occur on a

separate management network not directly accessible from the operational network. The

compromise of user workstations should not easily lead to the compromise of administrator

workstations.

 Implement sufficient logging and establish policies and procedures to review the logs to ensure an

unauthorized action is promptly detected and investigated. It is significantly easier to prevent

additional compromises into the network when initial attempts are detected and handled.

 Verify the integrity of all software when upgrading or installing the software on a network device,

and periodically verify the software running on the device to ensure it has not been tampered

since the last upgrade. The integrity of all software should be verified by performing a

cryptographic hash check on the files prior to copying them and after they have been copied to

the network device to ensure an adversary has not influenced the software upgrade process.

 Purchase network devices through vendor approved distribution channels. Counterfeit or recycled

equipment is generally sold for cheaper than approved resellers to entice buyers to purchase from

their inventory. The higher cost and reasonable level of confidence achieved by purchasing a

legitimate network device from an approved vendor can easily outweigh the additional costs of

detecting and mitigating issues with acquiring a counterfeit piece of equipment.

8

Remediation

There are numerous procedures documented for remediating a compromised workstation or a security

incident6. In most cases, a workstation can be easily removed from the network, wiped clean, rebuilt and

replaced without significant impact. Unfortunately, this is generally not true for network devices.

Removing a core router or another critical network device that is not load-balanced or redundant could

have a significant impact on the availability of the network. Even removing a single switch from the edge

of the network could disable network connectivity for a significant number of users.

My network device is compromised! What do I do?

There are several resources available that can provide additional guidance for remediating a compromised

network device or embedded system7 8. After detecting the existence of a successful compromise of a

network device using any of the methods previously described, several steps can be followed to remediate

the situation, but what should actually be done will depend on the operational requirements associated

with the network. In some situations, it may not be acceptable to disable a portion of the network even to

remediate a compromised network device.

Containment

The first step is to contain the compromise and ensure the adversary is unable to compromise other

systems on the network. It is useless to remediate a single network device if the adversary has already

been able to compromise other systems on the network. Discovering what other systems an adversary

may have accessed may not be immediately available so it is also critical to perverse any forensic

evidence, such as log messages, to investigate what other actions may have been performed by the

adversary. Additional detection efforts may be required to determine if the adversary has accessed other

network devices, workstations or servers throughout the network. It may be necessary to initially change

some passwords and keys to contain the adversary if legitimate credentials were utilized.

To ensure containment of the adversary, it may be necessary to disconnect any external connections to

other networks, including the Internet, partner networks, remote access or wireless connectivity. Even

though the path used by the adversary may be obvious, it may be possible for the adversary to regain

connectivity to the compromised system through another external connection, such as a wireless or

cellular bridge. Investigating additional connections is necessary when a potential hardware compromise

is detected or a wireless out-of-band connection exists.

Forensic Evidence

After the adversary is reasonably contained, forensic evidence should be obtained from the compromised

system and any other systems that may have been accessible to the adversary. This includes any log

messages or system status information that would be lost once the system is shut down. The following list

can be used as an example of some items that should be obtained from a compromised system, but this

list may not be complete.

 Current system clock for accurate log correlation.

 Current or previously logged in users.

9

 Network interface status and usage statistics.

 Established network connections.

 Neighboring devices.

 Routing tables and neighbors.

 Process listing.

 Memory usage.

 Status of authentication and time servers.

 Port security statistics.

 Access list statistics.

The compromised system can be disabled or shutdown and removed from the network after all forensic

evidence has been obtained. If possible, it may be reasonable to leave the system powered on but

completely disconnected from the network so additional forensic analysis can be performed on the

system. This assumes there is not a hardware modification that would introduce adverse effects into the

environment.

Be extremely cautious with replacing a compromised system with another system with a similar

configuration as the compromised system. This may be desired to ensure network availability is restored

without introducing unexpected changes into the network, but the adversary may be able to compromise

the replacement system in the same manner if the original attack vector is not discovered and mitigated.

Discovery and Mitigation

Before restoring the network to an operational state, it is absolutely necessary to discover and mitigate the

attack vector used by the adversary to compromise the network. If the vulnerability is not mitigated, it is

likely the adversary will successfully compromise the same system or other systems in the network

utilizing the same attack method. This may be an involved process of reviewing log messages and the

forensic evidence obtained above to discover the vulnerability exploited by the adversary. It is important

to note that the vulnerability may not be a technical issue (such as phishing), though it may be mitigated

through technical controls that have not yet been implemented (such as e-mail scanning and quarantine).

It may be necessary to request or hire the assistance of more technically capable expertise to determine

the cause of the compromise. Once the vulnerabilities are discovered, if more than one, they should be

appropriately mitigated to ensure the adversary is unable to regain access to the network. It may also be

necessary to perform a thorough vulnerability assessment of all systems on the network along with a

mitigation implementation phase to reduce the vulnerabilities to an acceptable level prior to restoring the

network to an operational state.

Change Passwords and Keys

If a network device has been compromised, either through unauthorized access, a software modification

or even a hardware modification, it is likely that the adversary was able to obtain sensitive configuration

information to include passwords or keys. After the adversary has been contained and all known

compromised systems have been removed from the network, all credentials should be changed.

10

This includes local account passwords, centralized account passwords, centralized authentication keys,

routing authentication keys, time synchronization keys, encryption and tunneling credentials (such as

Virtual Private Networks), and any other passwords or shared keys that may be utilized by the network

device. It may also be necessary to change administrator and user credentials on workstations and servers

if the adversary was able to gain access to any of those systems as well. It may also be necessary to

change passwords and keys more than once during the entire remediation process to ensure the adversary

does not have any operational credentials when the network is fully restored.

When possible, it is preferred to utilize an out-of-band mechanism for changing passwords so the new

passwords are not instantly captured by any lingering malware installed on systems. It is critical to follow

best practice guidance for changing passwords, so the adversary cannot guess or infer the new passwords

based on knowledge of the old passwords.

Restoration

Once all of the associated vulnerabilities have been mitigated and all known compromised systems have

been removed from the network, it may be time to restore the network to an operational state. This may

require installing replacement hardware or reconfiguring systems. Prior to re-establishing any connections

that were disabled, it is crucial to ensure the proper logging and monitoring capabilities are implemented

on the network to ensure any new compromises are immediately detected, investigated and responded to

in a timely manner.

11

Network Device Integrity (NDI) -

Unauthorized Access Detection

Unauthorized access via stolen credentials may be a common method used by an adversary to

compromise a network device, but may be difficult to detect. There is no clear mechanism to distinguish

unauthorized access from authorized access when legitimate credentials are used. Normal administrator

behaviors must be captured and correlated so that abnormal activities can be detected and investigated.

Most of the information necessary to perform this investigation may not be stored on the network device

itself, and must be obtained from centralized log servers.

Administrators usually follow the same patterns in how they perform their administrative duties. This

may include when they login, where they login from and how long sessions remain open. It is highly

common to see the same administrative activities or behaviors repeated across the network. Any

inconsistent activities or behaviors that seem out of the ordinary may be potential indicators of

unauthorized access on a network device and should be investigated.

Unfortunately, there is not a standard process for correlating all of this information, and it will depend on

how the network is configured and how systems are accessed. It is critical to understand normal

administrator behaviors before abnormal activities can be detected. Several areas that can be investigated

are described below.

Login Access

A primary area to investigate concerning unauthorized access is a list of accounts that have logged into a

network device. If remote syslog logging or SNMP trap logging is properly enabled, this information may

be available on a remote log server. If a centralized authentication server is utilized by the network

devices and accounting is properly enabled, this information may also be better obtained from the

Authentication, Authorization and Accounting (AAA) servers. It is critical to log when the access

occurred, the source address and how long the session lasted.

Most employees, including administrators, have a consistent daily work schedule. This knowledge can be

used to establish a timeframe when an administrator is expected to login to the network devices and how

long the sessions should normally last. Any deviation outside of the normal behavior can be an indication

of unauthorized access where the administrator's account credentials have been compromised.

Many administrators are also assigned a unique workstation, or a set of workstations, for performing

administrative tasks. The source address of any connections to the network devices should generally be

the same for each for administrator. This may depend on how the network is configured and what access

restrictions are implemented. The source address may not be useful if all administrators first login to a

centralized jump box to access the network devices. In this case, it may be necessary to obtain the access

logs from the jump box in addition to the access logs from the network devices or centralized servers.

Any account that is utilized from a different source address could be an indication of unauthorized access.

12

Configuration Changes

The configuration of a network device generally does not change very often once the configuration is in a

stable working state. A change may occur when there is a problem with the network or authorized

modifications need to be implemented. It is critical to monitor for any activities which involve modifying

the configuration or any actions which would be considered high risk activities. Even though many of

these actions can be legitimately used by administrators, they should be monitored to ensure they are

initiated with the proper authorization. Some examples of high risk activities are listed below.

 Modification of access restrictions.

 Modification of authentication or authorization mechanisms.

 Modification of logging procedures.

 Modification of the boot process.

 Creation of new VLANs, tunnels, virtual interfaces or connections.

 Creation of new accounts.

 Configuration changes through non-standard methods (such as SNMP or console access).

 Outbound connections from a network device.

 Copying files to or from a network device.

 Clearing of log messages.

 Filling up the log buffer.

 Unscheduled reboots.

 Interface changes.

 Enabling debugging modes.

 Enabling shell access.

 Executing scripts.

 Starting new processes.

 Console port access.

 Connection or removal of external storage devices (such as USB).

Whenever a change is made to the configuration of a network device, it is critical for each device to log

what administrator account made the change, when the change was made, and possibly what the exact

change was. This information can be crucial for detecting unauthorized changes to the configuration.

Sophisticated adversaries may attempt to cover their tracks by clearing any log messages that were

generated in connection with malicious activities. Without logs, it is difficult for network administrators

to determine what may have happened after an event. If the logs on a network device or on the centralized

log server have been cleared, removed or deleted, this is an instant indication that unauthorized access

may have occurred.

Many network devices have a buffer to store some of the logs locally, even when they are sent to a remote

log server. The adversary may attempt to overwrite the log buffer or generate additional log messages

until the buffer fills up and rolls over, or clear the buffer by simply rebooting the device. Any of these

actions could be an indication of unauthorized access.

13

Interface Changes

A malicious insider or an adversary that obtains physical access may connect an unauthorized system to

the network to attempt to bypass security restrictions implemented on the existing workstations. Network

devices, and especially switches, have multiple interface ports where physical network connections can be

established. Whenever a system is connected or disconnected from an interface port on a network device,

a notification is generally produced indicating that the status of the interface has changed to either up or

down. These notifications can be useful to detect the existence of unauthorized systems on the network.

When possible, it is also critical to determine the media access control (MAC) address of any connected

systems to determine if a newly connected system is unauthorized, or if an authorized system has simply

been moved to a different port. A complete inventory of current equipment can assist with discovering

unauthorized systems connected to the network. A network access control (NAC) solution, like 802.1X or

even something as basic as port-security, can assist with discovering and blocking unauthorized systems

connected to the network.

Physical Access

The logs on a network device should also be examined to determine if there were any attempts made to

connect via the console port, which is usually just a basic serial connection. Physical access to a network

device is generally required to connect to the console port. A terminal server can also be used to remotely

access the console port of network devices. Most administrators do not utilize the console port when

remote administration services are properly configured, and may only be used when the device cannot be

accessed over the network. Any attempts to access the network device via the console port could be an

indication of unauthorized access.

Many network devices also have a mechanism to configure how the device boots, through the device's

firmware, boot loader, or basic input/output system (BIOS). There may be various settings that can be

changed to influence the boot process, such as bypassing security mechanisms, ignoring the stored

configuration or allowing the password to be reset. These settings are usually configured the same for all

devices on the same network, and thus a device that has a different boot setting may be an indication of

unauthorized access, or an attempt to physically access the device via the console port.

Unscheduled Reboots

Many network devices must be rebooted to upgrade the operating system or even when applying some

configuration changes. These actions are usually scheduled by administrators to reduce the loss of

availability of network connectivity. An unscheduled reboot of a network device can easily be an

indication of unauthorized access or another potential problem. An unscheduled reboot is best discovered

by reviewing the logs and system information or through network monitoring tools.

Network devices can be legitimately rebooted, due to specific administrator actions or upgrading the

operating system. Whenever investigating a reboot of a network device, it is critical to check any logs or

status messages to determine the cause for the reboot. A device that was powered on from a cold restart

could have been accessed physically where a password reset was performed. A device that crashed and

14

was automatically restarted could have been due to an attempt to exploit a vulnerability or software flaw,

such as a buffer overflow. A device could have been rebooted by an adversary to clear the logs or to boot

into a modified version of the operating system.

Many network devices must be rebooted when upgrading the operating system. If the network device

loads all of the operating code into memory during the boot process, any changes made to the operating

system files stored on the network device will not be applied until the device is rebooted. Thus an

adversary may have to force a device to reboot for any unauthorized software modifications to be applied.

It is important to determine how much time has passed since the last time the device was rebooted, and

the reason for the last reboot. The longer a device has been up, the longer it has been since the stored files

have been loaded into memory. Large up times (tens of weeks, or even years) generally point to several

poor administrator practices. The software on a device that has not been rebooted in a long time has also

not been legitimately upgraded in at least that same amount of time.

Rebooting a device periodically will ensure that the executable code running memory matches the stored

operating system files, clearing out any potential memory-only implants. It is a good practice for network

administrators to always verify the stored operating system files prior to rebooting a network device to

ensure that the files are legitimate. It also confirms that the file storage mechanism is working. It is

possible for the flash or hard drive storing the operating system files to fail or become disconnected,

preventing the device from properly booting. It is critical for an administrator to discover such an issue

prior to a reboot.

Software Management

Many network devices may only store one version of the operating system at a time, but others may be

capable of storing more than one version simultaneously. If multiple versions of the operating system

exist, the device may have been recently upgraded or network administrators may have failed to remove

older versions after they were no longer needed. It could also be an indication of an attempted software

modification. It is critical to verify all operating system files stored on a device, regardless if they are in

use or not, to ensure a modified version of the operating system is not loaded on the next reboot.

It is also critical to verify what version of the operating system will load after the next reboot. If it is

different than the current running version, it is possible the device was legitimately upgraded but the

administrators were waiting for a scheduled time to reboot the network device. If the current running

version of the operating system is no longer stored on the network device, it may have been removed

prior to an upgrade because there was not enough space to store two different versions of the operating

system. Any changes to the operating system image files and differences between the running and boot

versions of the operating system could be an indication of a potential software modification and the

adversary was waiting for a more favorable time to reboot the network device to reduce the probability of

detection.

Another indicator to review when examining a network device is the operating system file timestamps.

Unfortunately, the timestamps on a network device may not be accurate, especially if the clock is not

properly synchronized with a centralized time server, or if the server was not available when the clock

was set and operating system files were copied to the network device. Even though file timestamps may

15

not be reliable, they could still be used when correlating information and looking for anomalies to

discover any potential unauthorized changes to the files.

Blocked Attempts

In addition to reviewing successful configuration changes, any actions that were blocked or denied by a

network device could be an indication of an adversary attempting to gain unauthorized access, or an

adversary that has already gained unauthorized access and is attempting to perform additional malicious

activities. It is critical to investigate any actions that were blocked or denied, as this can lead to the

discovery of a successful compromise or indicate the source of a potential adversary. The account utilized

and the source address will be critical for detecting other attempts to gain unauthorized access. Some

examples of blocked activities are listed below.

 Blocked inbound connections.

 Blocked outbound connections.

 Failed authentication (login) attempts, and locked out accounts.

 Failed authorization (action or command) attempts due to insufficient access.

 Denied connections due to insufficient (weak) encryption parameters.

Downgraded Encryption

Administrators are highly encouraged to utilize encrypted protocols for administrative tasks to ensure the

confidentiality of sensitive configuration information and administrative credentials when accessing

systems on the network. An adversary that is capable of collecting network traffic should not be able to

easily retrieve this information by simply examining the traffic. Encryption is also utilized for Virtual

Private Network (VPN) connections to provide confidentiality and protect communications between

trusted sites.

An adversary that desires to collect the contents of encrypted communications may attempt to influence

the connection negotiation process to force the protocol to utilize weaker protocols or keys that are more

easily cracked. Most encrypted protocols begin with some form of unencrypted negotiation that can

potentially be influenced by an adversary capable of modifying the traffic without violating the integrity

of the client or server verification.

For example, an SSH server will immediately provide a connected client with the versions of the protocol

that the server is capable of accepting. The client will respond with the versions it is capable of using, and

the server will provide the encryption parameters that it can support. The client will choose from the

supported encryption parameters and continue establishing the encrypted connection. If both the client

and server are capable of accepting both SSH version 1 and 2, an adversary could modify the initial

handshake to force both the client and server to negotiate using the weaker version 1 instead of the more

secure version 2, or modify the available encryption parameters so the client can only choose from

weaker parameters that are easier for the adversary to crack. Both the client and server will mutually

agree on the weaker encryption parameters unless they are configured to only utilize higher versions of

the protocol with strong encryption parameters.

16

The parameters utilized by encrypted protocols should be logged and reviewed to ensure that only the

stronger encryption parameters are accepted by both ends of the communication. Any client attempting to

connect that cannot support the stronger encryption parameters should be denied and the client software

should be upgraded. Any attempt to utilize weaker encryption parameters could be an indication that an

adversary is attempting to downgrade the encryption to enable information gathering to violate

confidentiality, or an attempt to gain unauthorized access by bypassing existing authentication

mechanisms.

Network Traffic Analysis

If a network device is compromised, the adversary may disable all of the monitoring capabilities and

prevent insight into any malicious activities performed. Similarly, access logs may not be available from

the network devices if logging has been not properly configured. Another useful method for detecting

unauthorized access is to monitor network traffic.

A significant amount of information can be obtained by examining network traffic, to include source and

destination addresses, the date and time of the activity, the amount of data transferred, and the duration of

the activity. The existence of any remote access connections to a network device, authorized or

unauthorized, should be visible on the network even when the communications are encrypted. Several

types of anomalous behaviors that can be discovered in network traffic are listed below.

 Connections to a network device from an unexpected source address.

 Outbound connections with a source address assigned to a network device. Most network devices

do not establish outbound connections to other systems unless initiated by an administrator

logged into the device.

 Malformed packets or non-administrative traffic to or from a network device.

 Encryption parameters during initial connection handshakes and negotiations.

 Inbound connections that unexpectedly terminate at the network device, and potentially coincide

with other outbound connections. Legitimate traffic may exist with this behavior if the network

device is an endpoint for a Virtual Private Network (VPN), Generic Encapsulated Routing (GRE)

tunnel, or provides proxy services.

The above behaviors are generally vendor independent and can be detected by examining network traffic

regardless of the type of the system under investigation.

17

Network Device Integrity (NDI) -

Software Modification Detection

The integrity of the software on a network device can be verified by determining whether or not any

critical files or operating system code has been modified and is different from the original file that was

provided by the vendor. This can be achieved by performing a hash-based verification of files stored on

the network device and verifying the executable code running in memory by comparing it to legitimate

operating system files or a known good copy of what is expected to be in memory.

It is critical to verify the executable code running in memory and not just the stored files because many

network devices load the stored operating system files into memory when the device is first booted. The

stored files are no longer necessary for the network device to continue operating after it boots. Since

many network device are left operating for long periods of time without a reboot, potentially years, an

adversary could modify the executable code running memory and there would be no indication of

tampering if only the stored files were verified.

File Verification9

To verify an individual file, a cryptographic hash is computed based on the contents of a file and

compared with a known good value. Any discrepancy with the comparison is an indication that the file

has been modified, while an exact match provides a certain level of confidence that the file has not been

modified. The process for computing these hashes is more complicated for network devices than other

systems since there may not be a trusted method for computing the hashes or accessing the files, and thus

multiple hashes must be obtained to achieve a higher level of confidence.

Some network devices may store the entire operating system in a single image file, while other network

devices may have hundreds or thousands of executable files similar to common desktop and server

operating systems. To fully verify the integrity of the operating system of a network device, it will be

necessary to repeat this process for every file stored on the device that contains executable code. Even

though file verification generally cannot be performed on configuration or text based files since they can

change depending on how the system is configured, this process can be potentially used to detect

configuration changes over time.

Online Hash

The online hash is computed by remotely logging into the network device and using the built-in

functionality of the network device's operating system to compute the hash of the file. This piece of

information is generally easy to acquire because it only requires remote network connectivity to the

device and the proper access to login to the device and execute a series of commands. Any discrepancies

between the online hash and a known good are an instant indication that the file has been modified.

Unfortunately, the online hash cannot always be trusted. If malicious modifications have been made to the

operating system files, the adversary could have modified the hash computation functions to provide

bogus information, which could be the correct hash for the unmodified version of a file, ultimately hiding

the fact that the file has been modified.

18

Depending on the system and the vendor, there may be multiple methods available to compute and obtain

an online hash. Since an adversary may attempt to hide an unauthorized presence by modifying the hash

computation functions, it is recommended to utilize all methods of computing an online hash when

additional methods exist. When available, different types of hashes should also be obtained (MD5, SHA1,

SHA256, SHA512) to provide a higher level of confidence, since some common hash functions are

known to have potential collisions.

Offline Hash

Instead of only relying on the operating system of the network device to compute the hash, the entire file

should be copied from the device to a trusted system where the hash is computed. Copying files is

significantly more complicated to perform over the network because it requires sufficient bandwidth, the

capability to copy files, the proper access to copy files, the network must be configured to permit

connections from the network device to the trusted system (a return route with no firewalls or access lists

blocking the traffic), and the trusted system must be listening with the appropriate services to accept

incoming files. The use of Network Address Translation (NAT) will also cause significant problems for

return traffic. Regardless of the potential difficulty to acquire the file, the offline hash provides

significantly greater confidence than the online hash because it is difficult for an adversary to influence.

When properly obtained, the offline hash is considered more trustworthy than the online hash. Similar to

the problems with the online hash, an adversary could potentially modify the copy functions used by the

operating system to provide the original unmodified file. A significant amount of sophistication is

required to modify the operating system in this way, and may require an entire copy of the original file to

also be stored on the system in addition to the modified file. Files can also be corrupted, intercepted or

modified during transmission back to the trusted system, and can produce false positive results,

depending on the protocols used. The offline file can be obtained multiple times using different transfer

methods to increase the level of confidence, though this can be an extremely time consuming process.

Instead of copying files over the network, an even more trusted method of acquiring the offline hash is to

obtain the file via physical access to the device. Some network devices store files on removable media

such as flash cards or optical discs. This may require shutting down the device, opening the case, or

rebooting the device in a limited access mode, which may not be feasible for operational networks.

Published Hash (Known Good)

The published hash is the known good hash that the online and offline hashes are compared to. This

information generally must be obtained by the vendor of the network device or operating system. When

available, additional information about the file should also be obtained, such as the file name, file size,

operating system version, release date, device requirements, and any other potentially relevant

information. When available, multiple hashes should also be obtained (MD5, SHA1, SHA256, SHA512).

Some vendors freely provide this information via their website, while others may require an account, and

yet others may not have a method to provide this information to their customers.

If the published hash is not available from the vendor but a legitimate copy of the original file can be

obtained via a process to download software from the vendor, the published hash can be manually

computed on that copy of the file. A legitimate copy of the original file would also be necessary to

19

perform a byte-for-byte comparison of the file to increase the level of confidence if comparing hashes is

not considered a sufficient method for verifying the integrity.

Regardless of how it is obtained, the published hash must be a trusted piece of information. To properly

discover a file modification, it is critical to compare the online and offline hashes with the published hash.

The online and offline hashes cannot simply be compared to each other. When a file has been modified

from the original, it is expected that the online and offline hashes should match exactly, but they would

not match the trusted published hash, which is why the published hash is so critical to this process.

It is also possible for a single file to have multiple published hashes, and all of them may be valid for

verification purposes. If the file has been legitimately updated by the vendor, it will have a different hash,

and possibly a different file size. This is why additional information about the file should also be obtained

from the vendor.

Hash Comparison

All three types of hashes should be compared for equality after they have been properly obtained. If all of

the hashes could not be obtained, or the hashes were not equal, the cause of the issue should be

determined. The fact that a hash could not be obtained through expected means could be an indication of

a malicious software modification. Providing a reasonable explanation for the lack of information can

ensure the results are as complete as possible and will assist with the analysis of the data and reduce the

number of false positives. Several common scenarios are described below.

If the online hash could not be obtained, the network device itself may not support the functionality to

compute the hash of the file. The lack of an online hash is not a severe concern since the offline hash is

more trustworthy than the online hash, assuming the offline hash is successfully obtained. A missing

online hash can be easily detected by examining of the output of any attempts to obtain the online hash. It

is possible this may be an indication of a malicious modification of the operating system, though not as

likely if the offline hash properly matches the published hash. Several potential reasons for missing an

online hash are summarized below.

 The necessary accesses or permissions were not obtained on the network device.

 The network device did not support an online hashing functionality.

 A software bug in the network device operating system reported that the file did not exist.

 A malicious software modification prevented a file from being hashed online.

If the offline hash could not be obtained, it is likely something prevented the file from being copied off of

the device. A firewall or router may have blocked the connection, or the trusted system may not have

been properly configured to accept the incoming files. Again, it is possible this may also be an indication

of a malicious modification of the operating system, and would be the result of a sophisticated adversary.

Several potential reasons for missing an offline hash are summarized below.

 The necessary accesses or permissions were not obtained on the network device.

 A firewall or router blocked the connection from the network device to the trusted system.

 The network device was configured to prevent outbound connections.

 The credentials provided to copy the file were invalid on the trusted system.

20

 The network device did not support encrypted protocols.

 The copy process was not configured to attempt to utilize more than one protocol.

 The trusted system was not properly configured to accept files via the supported protocols.

 A return route did not exist between the network device and trusted system, due to Network

Address Translation (NAT), Port Address Translation (PAT), or other routing issues.

 A software bug in the network device operating system reported that the file did not exist.

 The file was inaccessible due to a corrupted or disconnected file system.

 The file was corrupted during the transfer.

 The file transfer was incomplete.

 The file was stored in an unexpected or inaccessible location on the trusted system.

 The file system on the trusted system was full.

 A malicious software modification prevented the file from being copied offline.

If both the online hash and the offline hash were not obtained, it is likely that the file did not exist or

could not be accessed. Many times this is caused by not having the correct privilege level for accessing

the file or running the necessary commands on the device. In other cases, the file may have simply been

deleted. Some network devices will load the entire operating system files into memory, and the stored file

can be deleted once the operating system loads. This may happen when the network administrators have

replaced or upgraded the operating system files on the device, but have not yet been rebooted the device

to load the new files. The file system may also have been corrupted or disconnected, preventing the file

from being accessed. Several potential reasons for missing both the online hash and offline hash are

summarized below.

 The necessary accesses or permissions were not obtained on the network device.

 The file did not exist, was deleted or could not be accessed.

 The file was inaccessible due to a corrupted or disconnected file system.

 A malicious software modification prevented the file from being copied offline.

If the published hash is unavailable, a determination cannot be made about the integrity of the file

because there is no known good value to compare to. Some vendors do not provide known good hashes so

the necessary information is not available. And of course it is possible that the vendor did not create the

file at all and thus a published hash does not exist. It may be necessary to contact the vendor directly to

attempt to obtain a legitimate copy of the original file to manually compute the published hash. Several

potential reasons for missing the correct published hash are summarized below.

 A known good hash was not published by the vendor.

 A legitimate copy of the file could not be obtained from the vendor.

 The file was renamed and a published hash did not exist with the corresponding name.

 The file was renamed and the wrong published hash was utilized for the corresponding name.

 A malicious software modification prevented the file from having a published hash.

If both the published hash and a copy of the original file cannot be obtained from the vendor, the best

course of action is to compare the hashes across similar systems that have the exact same file. The more

files with the same hash, the more likely the file has not been modified, especially when looking across

multiple networks. This can be problematic if all files were cloned from the same source, such as a local

21

repository that contained a modified version of the file. The integrity of the original source of a file

should be taken into account when using this method. This process does not provide a high level of

confidence, but may be the only method available.

It is also possible that a file was renamed by a network administrator prior to it being copied to the

network device. It may be necessary to verify the file name with the operating system version to ensure

that the name of the file is correct. Otherwise the wrong published hash may be used during the

comparison. And as previously noted, a file could be associated with multiple valid published hashes, so

it may be necessary to compare more than hash before a valid match is discovered.

File corruption can occur during the transfer of the file, though this is not very likely when using reliable

or encrypted transfer protocols. Some systems may behave differently when a file system becomes

corrupt, and invalid data is returned when copying the file instead of presenting an error. This could result

in differing online and offline hashes. In these cases, the entire offline contents of the file should be

compared with a known good copy of the file to determine where the differences occur.

Files may be transferred to or from some systems using a serial console connection and the XMODEM

protocol. XMODEM always transfers data in blocks of 128 bytes. Any remaining bytes in the last block

are padded with the hexadecimal character 0x1A to indicate the end of the file. Some systems may

incorrectly store the entire last block of the file with the padding. Both the online and offline hashes will

not match the published hash because of the padded bytes at the end. If this behavior is discovered, the

offline hash should be re-computed by removing all of the padded bytes at the end. If the file size was

obtained from the vendor, it could be used ensure the file is truncated to the correct size.

A file modification does not necessarily indicate that the file has been modified maliciously. The

existence of padding or corruption will result in properly detecting a file modification, but does not

indicate that the system has been compromised. It these cases, it is absolutely necessary to obtain a known

good and trusted copy of the original file from the vendor. A byte-for-byte comparison should be

performed to determine how the files differ. Additionally, the modified file can be reverse engineered to

investigate how the differences could cause the functionality of the operating system to behave

differently. It may also be necessary to perform the verification process described above multiple times to

obtain a different data set to determine whether or not there was an error that occurred during the initial

attempt. A file modification should be considered a malicious modification only after all other reasonable

explanations have been ruled out, or the file attributes are consistent with a previously known bad file

modification.

The following table provides a summary of some of the scenarios described above that could be

encountered while performing software modification detection. The passing results include a relative

level of confidence associated with the result.

22

Hash Comparison Logic Result Possible Reason(s)

online == offline == published PASS (High) File has not been modified

offline == published; missing online PASS (Medium)

Online hash not supported by device

Invalid accesses or permissions

Potential malicious file modification

online == published; missing offline PASS (Low)

Network restrictions (firewall, ACLs)

Configuration (no outbound connections)

Invalid accesses or permissions

Trusted system incorrectly configured

Potential malicious file modification

online == offline; missing published INCOMPLETE

Vendor did not provide hash or file

File was renamed

File was not created by vendor

Potential malicious file creation

(online == offline) != published FAIL File has been modified

(online == published) != offline

online != published; missing offline

offline != published; missing online
FAIL

File or file system corrupted

File has been modified (malicious)

(offline == published) != online FAIL File has been modified (malicious)

missing online and offline INCOMPLETE

File does not exist

File cannot be accessed, wrong permissions

File system corrupt or disconnected

Self-Verification

Some network devices may include a system dependent or proprietary feature for internally verifying the

integrity of operating system files. This may be a pre-computed hash, checksum or cryptographic

signature that is stored in the file itself, or in some other location, that is treated as a known good. The

network device may internally verify a file before using it by re-calculating the hash or checksum, or by

cryptographically verifying the signature. Since these verification mechanisms store the known good

along with the file, it may be easy for an adversary to replace the hash or checksum to match what is

internally computed. A cryptographic signature would be significantly harder for an adversary to

successfully modify without having the original private key, but it may be possible to replace the public

key used for verification if it is also stored on the network device.

If the vendor provides an internal feature to verify files, it should be used in addition to the file

verification process described above to provide an overall higher level of confidence. Even though it may

not provide a high level of confidence by itself, it can be used to quickly detect file modifications or

prevent the execution of modified files. Some network devices may not have this verification feature

enabled by default, so it may be necessary for administrators to enable it.

Higher Confidence Levels

In some cases, it may be necessary to provide even more confidence that a file has not been modified. A

higher level of confidence can be obtained by attempting to verify a file using all methods available. This

23

includes obtaining all possible online hashes, obtaining an offline copy of the file using all protocols

available, and utilizing all available self-verification features. This can be time consuming, but the more

methods that provide a positive result, the more likely the file is legitimate and has not been modified.

If additional confidence is required, multiple cryptographic hash functions could be used rather than

relying only on one, such as following the above process utilizing two or more hashes. Obviously this

method requires the vendor to provide the published hashes from multiple cryptographic hash algorithms.

If the vendor does not provide these additional hashes, it may be necessary to obtain a trusted copy of the

original file and manually compute the published hashes.

Another method to further increase the level of confidence is to compare the entire offline file byte-for-

byte with a trusted copy of the file. This provides significantly greater confidence than hashes since some

hashes may be subject to collision attacks. It may be more difficult to obtain an original copy of file from

the vendor, especially without a maintenance contract. This also requires an offline copy of the file from

the network device, but fortunately this is already obtained for computing the offline hash.

Memory Verification

Similar to file verification, a cryptographic hash can be computed on the contents of memory and

compared with a known good value. The contents of memory are always changing in every system, so it

is useless to compute the hash on the entire contents of memory. The operating system code that resides

in memory theoretically should remain static so the cryptographic hash should only be computed on those

areas in memory where executable code resides. Determining the location of executable code in memory

can be an extremely difficult task for some systems.

Unfortunately, performing a simple hash comparison may not be sufficient for verifying the memory of

some systems. The operating system can implement address space layout randomization (ASLR)10 to

protect against buffer overflow attacks by randomly arranging the location in memory where code resides

when the system first boots. It will be useless to compute the hash on these portions of memory if they are

different every time the system is booted. For systems that implement ASLR, it will be necessary to

rearrange the expected contents of memory to match the layout of the running system before a

comparison can be made. Rather than using cryptographic hashes, it is likely more effective to compare

the actual bytes in memory and note any differences.

Executable space protection11 is another security mechanism where an operating system marks certain

areas of memory as non-executable. Systems that do not implement such protections could allow code to

be executed in other areas in memory which normally would not contain executable code and thus would

not be verified through this process. Fortunately, it is highly likely that the areas of memory where

executable code is expected to reside would need to be modified in order for the system to also execute

any code residing in other areas of memory. For this reason, it is assumed that memory verification

should only need to be performed on the areas of memory where executable code is expected to reside, as

long as this process is complete and all areas of executable memory are verified.

Network device vendors may also implement other methods for attempting to prevent executable code

from being modified in memory or from executing code in other areas of memory. These methods will

24

significantly complicate the processes used for verifying the contents of memory, and will be system

dependent cases that will need to be handled separately.

Regardless, in order to perform memory verification on a network device, there must be an administrative

function that allows the contents of memory to be hashed or copied offline. If such a function does not

exist for a specific device, it is likely that memory verification cannot be performed on that device. In

those cases, it is recommended to perform file verification, and if all hash comparisons are correct, reboot

the device to ensure the legitimate files are executed during the boot process.

But even if an administrative function does exist for hashing and copying the contents of memory, it is

highly unlikely that vendors will provide a known good cryptographic hash for executable code residing

in memory. It will be necessary to establish a set of known good hashes of memory for specific versions

of the operating system and each model. Similar to file verification, systems running the same version of

the operating system can be compared with each other. This can be a tedious process but can be used to

quickly determine whether or not executable code has been modified in memory. Unfortunately, this

process will not be sufficient for systems utilizing ASLR or other vendor proprietary methods.

Since all executable code in memory should be derived from one or more files stored on the device, it

theoretically should be possible to generate the known good contents of memory from known good copies

of the operating system files. This would be a significantly more tedious process for even a single version

of the operating system, and requires knowledge of how the operating system files are copied into

memory for execution during the boot process.

Firmware Verification

Even if all of the operating system files stored on a network device were properly verified and the

contents of memory were assumed to be correct since legitimate files were used when the device booted,

it is still possible that a software modification exists in the firmware, boot loader, or basic input/output

system (BIOS) that is executed when the device boots. This is software that is generally stored on a read-

only memory (ROM) chip located on the device's motherboard and is used to load the operating system

files when the network device is first turned on or rebooted. For some devices, the firmware may be the

same thing as the operating system. The term firmware will be used to refer to the software used to boot

the device and load the operating system files, and not the actual operating system files.

A sophisticated modification of the firmware could cause legitimate operating system files to be modified

as they are loaded into memory, resulting in a memory-only operating system software modification that

would not be detected by verifying the stored files, even if the device was rebooted with files known to be

legitimate. Fortunately, it is assumed that a malicious modification of the firmware would also result in a

modification to the executable code in memory. So for those systems that do support an administrative

interface to access the contents of memory, a firmware modification could be detected by performing

memory verification in addition to file modification, even though it may not be obvious that a firmware

modification may have been the source of a detected memory modification.

Some systems may allow the ROM chip containing the firmware to be accessed while the operating

system is running. Other systems may only allow the firmware to be accessed from a minimal interface

that is only accessible with physical access and after rebooting the system into a non-operational mode.

25

Other systems may only provide write access to upgrade the firmware and require the ROM chip to be

physically removed from the device and accessed via a specialized chip reader to read the contents.

Regardless of the method used to acquire the firmware, a cryptographic hash can be computed on the

firmware and compared to a known good, similar to file verification. It will be highly system dependent

whether or not a specific network device supports verification of the firmware in this manner.

Unfortunately, the only option to verify the integrity of the firmware on some systems may be to simply

overwrite it with a known good copy provided by the vendor.

Rootkit Detection

One final area to investigate when verifying the integrity of a network device is to attempt to obtain the

same information using multiple methods. Many rootkits attempt to hide their existence from users and

administrators by hooking various operating system calls and modifying the output before it is provided

to the caller. If the same information can be retrieved through multiple methods, it is possible that the

adversary may not have hooked all of them.

As an example, an adversary could insert a malicious section into the configuration and then hide it by

hooking the call that retrieves the configuration. When the configuration is displayed to an administrator,

the hook could remove the malicious section, hiding it from view. But if the administrator is able to

retrieve the configuration using a different call that the adversary was not aware of or did not hook, the

malicious section could easily be seen by comparing it with the output from the other call.

At a minimum, the configuration of a network device should be obtained through multiple methods, if

supported by the network device. If also supported, other information should also be obtained in the same

manner, such as established network connections, local accounts, routing tables and any other information

that would be beneficial for an adversary to modify to prevent detection.

26

Network Device Integrity (NDI) -

Hardware Modification Detection

It can be extremely difficult to verify the integrity of any piece of hardware, even when physical access is

available. Some components can be detected as counterfeit by performing an X-ray and discovering

irregularities by comparing the result with other similar equipment12. Some other studies have shown that

a malicious hardware modification can be detected by physically testing the integrated circuits (IC) and

identifying unknown functionality13. Wireless hardware modifications can be detected by analyzing radio

frequency (RF) signals that are emanating unexpectedly from a device. Unfortunately, all of these

methods require direct physical examination of a device and cannot be quickly repeated for a large

number of devices in a short amount of time.

Physically examining every network device is probably not feasible for most networks due to physically

separate locations or the vast size of the network. Regardless, there are several actions that can be

performed on some systems when only remote access is available. Even though these steps may not

provide a high level of confidence, they may still provide a basic indication of a potential hardware issue.

Unique Identifiers

Most network devices are hardcoded with a unique serial number. Even individual pieces of equipment

that can be added or removed may also have their own unique serial numbers, such as pluggable add-on

cards, interfaces or blades. Serial numbers often follow a very specific format according to each vendor,

and the serial numbers assigned to a device can be verified to conform to this specification. Some vendors

may also provide a service that allows customers to validate serial numbers as legitimate pieces of

equipment and verify where they were shipped and who they were sold to.

It is assumed that an adversary producing counterfeit equipment will already know the expected serial

number format. To conform to the expected format, the adversary may simply duplicate or clone known

legitimate serial numbers. A duplicate serial number can be detected by gathering serial numbers from

unique devices and looking for more than one instance of the same serial number. Since the serial number

may be commonly used to identify unique devices based on the physical hardware, it will be necessary to

utilize a different unique attribute to identify devices independent of the hardware. The configuration of

each system should be unique, because each system should at least have a different IP address assigned to

it, and thus a cryptographic hash of the configuration should be sufficient to uniquely identify devices.

This assumes no two devices have identical configurations, the configurations of the network devices do

not change while data is obtained from all the devices on the network, and the same cryptographic hash is

used for systems of the same type. This unique identifier can be correlated with serial numbers to detect

potentially duplicate serial numbers.

Another unique piece of information that should be assigned to a network interface card attached to a

network device is the media access control (MAC) address. The MAC address should be unique for each

physical interface. The MAC addresses on all network devices can be obtained and correlated similar to

serial numbers. For some devices, it may only be necessary to obtain the chassis MAC address if

subsequent addresses on the same piece of equipment are incremental.

27

Operating Statistics

Many network devices also have a mechanism to monitor specific attributes about the operating status of

the hardware itself. This includes voltages, temperatures and fan speeds. Generally these values should be

within a normal expected range, as specified by the vendor. These ranges will be vendor and system

specific, and it depends on the vendor whether or not this information is available. Any deviation of these

values may be a potential indication that the hardware is counterfeit. Independent of detecting hardware

modifications, this information can also detect potential hardware failures before they occur.

Attributes like voltages and temperatures can be obtained by physically examining a device with external

gauges, but some of this information may be available when only remote access is available. A network

device must be built with internal sensors and be capable of monitoring itself and include a mechanism to

reliably report this type of information to network administrators. When this information is available,

these attributes can be compared with other legitimate systems, which may be inconsistent in counterfeit

equipment. Unfortunately, these attributes will likely provide a lower level of confidence than physically

examining a system.

Network Traffic Analysis

Another method to detect counterfeit equipment is to passively monitor network traffic that is processed

by a device and calculating the time elapsed for the device to process a packet14. When a legitimate piece

of hardware is installed, an individual packet of the same size should theoretically take the same amount

of time for a network device to process. Any deviations from normal expected behavior could be an

indication of a potential hardware modification.

Similar to unauthorized access detection, a hardware modification may also be detectable by passively

monitoring the contents of network traffic or examining the source and destination addresses. The

introduction of unexpected network connections that originate from the network device itself could be an

indication of a hardware modification that exfiltrates sensitive information to an external destination. If

the software on a network device is exhibiting this type of behavior and is verified to be legitimate, the

source of the unexpected network connections could be an additional piece of hardware added to the

network device.

Fortunately, analyzing network traffic is generally not system specific, so the detection of unexpected

network connections can be performed for any type of system, as long as the passive sensors monitoring

the traffic are installed in appropriate locations on the network around the suspect systems.

28

Network Device Integrity (NDI) -

Worksheets

The following pages contain several template worksheets that can be used for performing Network

Device Integrity (NDI). These worksheets can assist with ensuring all of the necessary information is

obtained from each device and the most critical areas are reviewed during the analysis of that information.

After these worksheets have been filled in with the relevant information, the methodology provided above

can be performed with this information to verify the integrity of the network device, along with any

vendor specific cases.

These worksheets can be printed double sided and the corresponding information key will be printed on

the back side of each worksheet for reference.

29

Network Device Integrity (NDI) - System Information

Date / Time

Host Name

Model

Device Serial Number

Add'l Serial Numbers

Unique Attribute
Hash of Stored Configuration

IP Addresses MAC Addresses

Uptime

Firmware Version(s)
Firmware / Boot loader / BIOS

Boot Settings

Last Reboot Reason

Self-Verification
Enabled?

 Exists?

Running OS Version

Boot OS Version(s)

Other OS Version(s)
Exists but not used

Operating Statistics
Voltages, Temperatures, Fan Speeds

Rootkit Detection
Output Comparison

Observations

30

System Information Worksheet

This worksheet contains a table of information that should be obtained from each unique network device

that is examined.

 Date / Time - when the provided information was obtained (include time zone)

 Host Name - name assigned to the network device (may not necessarily be unique)

 Model - vendor assigned hardware model

 Device Serial Number - serial number assigned to the device (or chassis)

 Add'l Serial Numbers - any other relevant serial numbers assigned to peripheral equipment

 Unique Attribute - a piece of information that can uniquely identify a network device

independent of the hardware, such as a cryptographic hash of the configuration

 IP Addresses - relevant IPv4 and IPv6 addresses assigned to the network device

 MAC Addresses - relevant MAC addresses assigned to the network interfaces

 Uptime - how long the device has been up

 Firmware Version(s) - firmware, boot loader or BIOS used to boot the device; if more than one

version exists, note which version is used

 Boot Settings - firmware, boot loader or BIOS settings that determine how the device boots

 Last Reboot Reason - why the device was last rebooted

 Self-Verification - whether or not self-verification is enabled for executable files

 Running OS Version - current running version of the operating system

 Boot OS Version(s) - versions of the operating system that may attempt to be loaded after the

next reboot of the device

 Exists? - it should be noted if the running OS version or any of the configured boot OS versions

do not exist on the file system

 Other OS Version(s) - any other executable files stored on the network device that are currently

not in use and will still not be used after a reboot

 Operating Statistics - voltages, temperatures, fan speeds and similar relevant information

 Rootkit Detection - any relevant information concerning the comparison of similar outputs

obtained via different methods

 Observations - any other relevant observations about the network device

31

Network Device Integrity (NDI) - Unauthorized Access Detection

Device Identifier
Host Name / Serial Num / IP Addr

Login Access

Date / Time Account Source Address Duration

Configuration Changes

Date / Time Account Source Address Change Detail

Blocked Attempts

Date / Time Account Source Address Attempted Action

Interface Changes

Date / Time Interface State

Other Events

Date / Time Event

32

Unauthorized Access Detection Worksheet

This worksheet contains a table of information that should be obtained for each event that occurred

concerning a network device that should be investigated. Obviously, there are probably more events than

can fit on this worksheet, and some events may contain relevant information not requested by this

worksheet. Regardless, this worksheet can still be used as a reference to determine what types of events

should be reviewed first.

 Device Identifier - unique host name, serial number or IP address for the network device

 Date / Time - timestamp when the event occurred

 Account - user account associated with the corresponding action

 Source Address - if known, the source address of the event

 Duration - the length of time the administrative connection was active

 Change Detail - what information was changed in the configuration

 Attempted Action - what action was attempted that was blocked or denied

 Interface - the interface name or identifier that was related to the event

 State - the new status of the interface according to the event (up, down, etc)

 Event - detailed information about the event that occurred

33

Network Device Integrity (NDI) - File / Memory / Firmware Verification

Device Identifier
Host Name / Serial Num / IP Addr

File Name

File Path

File Version

File Size

File Timestamp

File Permissions

Hash Type

Online Hash(es)
and Source

Offline Hash(es)
and Source

Published Hash(es)
Known Good

Published File Name

Published File Path

Published File Version

Published File Size

Published Release Date

Hash Comparison
Pass / Fail / Incomplete

 File Size Comparison
Pass / Fail / Incomplete

Self-Verification
Checksum or Other Hash(es)

 and Verification Result

Observations

34

File / Memory / Firmware Verification Worksheet

This worksheet contains a table of information that should be obtained from each file on a network device

that should be verified. This should include operating system files and other executables, and any other

files that do not normally change and could potentially be used by an adversary to perform malicious

activities. Additional copies of the worksheet can be used for different files, or for the same file but using

a different type of cryptographic hash. This worksheet can also apply to the contents of memory and the

firmware in addition to stored files, even though all of the fields may not apply in each situation.

 Device Identifier - unique host name, serial number or IP address for the network device

 File Name - name of the file

 File Path - path of the file in reference to where it was stored on the network device

 File Version - vendor defined version of the file, if applicable

 File Size - the number of bytes contained in the file

 File Timestamp - the date and time the file was last written on the network device

 File Permissions - the permissions assigned to the file

 Hash Type - type of cryptographic hash utilized in the fields below

 Online Hash(es) - any online hashes obtained for the above file, including the source such as the

command utilized to obtain the hash

 Offline Hash(es) - any offline hashes associated with the above file, including the source such as

the protocol utilized to obtain the offline file

 Published Hash(es) - any published hashes associated with the above file

 Published File Name - name of the file associated with the above published file

 Published File Path - path of the file associated with the above published file

 Published File Version - operating system version associated with the above published file

 Published File Size - number of bytes contained in the above published file

 Published Release Date - date the above published file was released by the vendor

 Hash Comparison - result of comparing the online, offline and published hashes

 File Size Comparison - result of comparing the file size with the published file size

 Self-Verification - results of any vendor specific self-verification features

 Observations - any other relevant observations about the file

35

References

1 Cisco Event Response: SYNful Knock Malware [October 9, 2015]

http://www.cisco.com/c/en/us/about/security-center/event-response/synful-knock html

[Accessed February 23, 2016]

2 Evolution of attacks on Cisco IOS devices [October 8, 2015]

http://blogs.cisco.com/security/evolution-of-attacks-on-cisco-ios-devices

[Accessed February 23, 2016]

3 Nasty Cisco Attack [August 19, 2015]

https://www.schneier.com/blogs/archives/2015/08/nasty cisco att.html

[Accessed February 23, 2016]

4 Cisco network kit warning: Watch out for malware in the firmware [August 13, 2015]

http://www.theregister.co.uk/2015/08/13/cisco warning malware in firmware/

[Accessed February 23, 2016]

5 Cisco Guide to Harden Cisco IOS Devices [January 6, 2016]

http://www.cisco.com/c/en/us/support/docs/ip/access-lists/13608-21 html

[Accessed February 23, 2016]

6 Computer Security Incident Handling Guide [August 2012]

http://nvlpubs.nist.gov/nistpubs/SpecialPublicatiosn/NIST.SP.800-61r2.pdf

[Accessed February 23, 2016]

7 Targeted Cyber Intrusion Detection and Mitigation Strategies (Update B) | ISC-CERT [February 6, 2013]

https://ics-cert.us-cert.gov/tips/ICS-TIP-12-146-01B

[Accessed February 23, 2016]

8 A Hack Attack [No Date]

http://www.cisco.com/cisco/web/solutions/small business/resource center/articles/secure my business/ha

ck attack/index.html

[Accessed February 23, 2016]

9 File verification - Wikipedia, the free encyclopedia [February 15, 2016]

https://en.wikipedia.org/wiki/File verification

[Accessed February 23, 2016]

10 Address space layout randomization - Wikipedia, the free encyclopedia [February 20, 2016]

https://en.wikipedia.org/wiki/Address space layout randomization

[Accessed February 23, 2016]

11 Executable space protection - Wikipedia, the free encyclopedia [February 3, 2016]

https://en.wikipedia.org/wiki/Executable space protection

[Accessed February 23, 2016]

12 The Hidden Dangers of Chop-Shop Electronics - IEEE Spectrum [September 20, 2013]

http://spectrum.ieee.org/semiconductors/processors/the-hidden-dangers-of-chopshop-electronics

[Accessed February 23, 2016]

http://www.cisco.com/c/en/us/about/security-center/event-response/synful-knock.html
http://blogs.cisco.com/security/evolution-of-attacks-on-cisco-ios-devices
https://www.schneier.com/blogs/archives/2015/08/nasty_cisco_att.html
http://www.theregister.co.uk/2015/08/13/cisco_warning_malware_in_firmware/
http://www.cisco.com/c/en/us/support/docs/ip/access-lists/13608-21.html
http://nvlpubs.nist.gov/nistpubs/SpecialPublicatiosn/NIST.SP.800-61r2.pdf
https://ics-cert.us-cert.gov/tips/ICS-TIP-12-146-01B
http://www.cisco.com/cisco/web/solutions/small_business/resource_center/articles/secure_my_business/hack_attack/index.html
http://www.cisco.com/cisco/web/solutions/small_business/resource_center/articles/secure_my_business/hack_attack/index.html
https://en.wikipedia.org/wiki/File_verification
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Executable_space_protection
http://spectrum.ieee.org/semiconductors/processors/the-hidden-dangers-of-chopshop-electronics

36

13 Addressing the Challenges of Hardware Assurance in Reconfigurable Systems [2013]

http://ersaconf.org/ersa13/papers/Robinson-Hardware-Assurance.pdf

[Accessed February 23, 2016]

14 A Network-based Approach to Counterfeit Detection [November 2013]

http://www2.ece.gatech.edu/cap/papers/HST13%20Paper%20186%20A%20Network-

based%20Approach%20to%20Counterfeit%20Detection.pdf

[Accessed February 23, 2016]

http://ersaconf.org/ersa13/papers/Robinson-Hardware-Assurance.pdf
http://www2.ece.gatech.edu/cap/papers/HST13%20Paper%20186%20A%20Network-based%20Approach%20to%20Counterfeit%20Detection.pdf
http://www2.ece.gatech.edu/cap/papers/HST13%20Paper%20186%20A%20Network-based%20Approach%20to%20Counterfeit%20Detection.pdf

